DRV-Fingerprinting: Using Data Retention Voltage of SRAM Cells for Chip Identification

نویسندگان

  • Daniel E. Holcomb
  • Amir Rahmati
  • Mastooreh Salajegheh
  • Wayne P. Burleson
  • Kevin Fu
چکیده

Physical unclonable functions (PUFs) produce outputs that are a function of minute random physical variations. Promoted for low-cost authentication and resistance to counterfeiting, many varieties of PUFs have been used to enhance the security and privacy of RFID tags. To different extents, applications for both identification and authentication require a PUF to produce a consistent output over time. As the sensing of minute variations is a fundamentally noisy process, much effort is spent on error correction of PUF outputs. We propose a new variant of PUF that uses well-understood properties of common memory cells as a fingerprint. Our method of fingerprinting SRAM cells by their data retention voltage improves the success rate of identification by 28% over fingerprints based on power-up state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standby supply voltage minimization for deep sub-micron SRAM

Suppressing the leakage current in memories is critical in low-power design. By reducing the standby supply voltage (VDD) to its limit, which is the data retention voltage (DRV), leakage power can be substantially reduced. This paper models the DRV of a standard low leakage SRAM module as a function of process and design parameters, and analyzes the SRAM cell stability when VDD approaches DRV. ...

متن کامل

Canary Replica Feedback for Near-DRV Standby VDD Scaling in a 90nm SRAM

Canary bitcells act as online monitors in a feedback architecture to sense the proximity to the Data Retention Voltage (DRV) for core SRAM bitcells during standby voltage scaling. This approach implements aggressive standby VDD scaling by tracking PVT variations and gives the flexibility to tradeoff between the safety of data and decreased leakage power. A 90nm 128Kb SRAM test chip confirms tha...

متن کامل

Stability Analysis of 6T SRAM at 32 Nm Technology

ABSTRACT: SRAM area is expected to exceed 90% of overall chip area because of the demand for higher performance, lower power, and higher integration. To increase memory density, memory bitcells are scaled to reduce their area by 50% each technology node. High density SRAM bitcells use the smallest devices in a technology, making SRAM more vulnerable for variations. This variation effect the sta...

متن کامل

Deep Sub-Micron SRAM Design for Ultra-Low Leakage Standby Operation

Deep Sub-Micron SRAM Design for Ultra-Low Leakage Standby Operation by Huifang Qin Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California, Berkeley Professor Jan M. Rabaey, Chair Suppressing the standby current in memories is critical in low-power design. By lowering the supply voltage (VDD) to its standby limit, the data retention voltage (DRV...

متن کامل

SRAM Cell Optimization for Ultra-Low Power Standby

This paper proposes a comprehensive SRAM cell optimization scheme that minimizes leakage power under ultra-low standby supply voltage (VDD). The theoretical limit of data retention voltage (DRV), the minimum VDD that preserves the states of a memory cell, was derived to be 50 mV for an industrial 90 nm technology. A DRV design model was developed on parameters including body bias, sizing, and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012